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Saturated Liquid Densities for 33 Binary Refrigerant
Mixtures Based on the ISM Equation of State
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In this work, the ISM equation of state based on statistical-mechanical per-
turbation theory has been extended to liquid refrigerant mixtures by using
correlations of Boushehri and Mason. Three temperature-dependent param-
eters are needed to use the equation of state: the second virial coefficient,
B2(T ), an effective van der Waals covolume, b(T ), and a scaling factor, α(T ).
The second virial coefficients are calculated from a correlation based on the
heat of vaporization, ∆Hvap, and the liquid density at the normal boiling
point, ρnb. α(T ) and b(T ) can also be calculated from second virial coeffi-
cients by a scaling rule. The theory has considerable predictive power, since
it permits the construction of the PVT surface from the heat of vaporization
and the liquid density at the normal boiling point. The equation of state was
tested on 33 liquid mixtures from 12 refrigerants. The results indicate that
the liquid densities can be predicted to at most 2.8% over a wide range of
temperatures, 170–369 K.

KEY WORDS: correlation; equation of state; heat of vaporization; refriger-
ants; saturation liquid density of mixtures.

1. INTRODUCTION

The equation of state plays a central role in the treatment of the thermo-
dynamic properties of fluids, particularly of mixtures. For this purpose, an
analytical equation having a statistical–mechanical basis in molecular the-
ory is very desirable. The most fundamental tool in providing a basis to
predict the thermophysical properties of matter is the equation of state.
Equations of state attempt to describe the relationship between tempera-
ture, pressure, and volume for fluids or mixtures of substances. Once the
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EOS of a system is established, all thermodynamic behavior of the system
can be calculated by means of statistical mechanical tools. Unfortunately,
among the equations of state available, only a few are on a sound ana-
lytical basis and are proper for this purpose. Regarding the vast applica-
bility of different refrigerants, a precise knowledge of the pressure–density
relation of these refrigerants over an extended range of temperature and
pressure is extremely useful in predicting thermophysical properties. Theo-
ries of liquids have been developed over the past years based on the rec-
ognition that the structure of a liquid is determined primarily by repulsive
forces, so that fluids of hard bodies can serve as a useful reference state
for perturbation theories.

An analytical EOS, which has a sound basis in statistical–mechani-
cal perturbation theory was proposed by Song and Mason [1] for pure
fluids. This equation of state produces very accurate results for fluids up
to the critical temperature. One of the most powerful features of this
equation of state is the presence of only one adjustable parameter related
to the structure of the substance. The only initial information needed
for this equation of state is the intermolecular potential function of the
systems. But there are no exact intermolecular potential energies (except
for some simple compounds) for real fluids. Ihm et al. [2] presented a
new corresponding-states method that reduces the entire pressure–volume–
temperature (PVT) surface of a pure nonpolar fluid to a single curve. This
reduction of a surface to a curve is based on statistical–mechanical the-
ory, which also furnishes the algorithms for calculating, from the intermo-
lecular pair potential, the three temperature-dependent parameters needed
for the reduction. If the pair potential is not known, data on the second
virial coefficient as a function of temperature can be used instead. The
ISM equation of state is not accurate enough in the critical and two-phase
regions, but otherwise describes the volumetric behavior of real fluids well
over the entire range from the dilute gas to the dense liquid. It has consid-
erable predictive power, since it permits the construction of the entire PVT
surface from just the second virial coefficient plus a few liquid densities.

In 1992, Ihm et al. [3] presented an EOS based on statistical–
mechanical perturbation theory for mixtures of fluids. The second viri-
al coefficient, which characterizes binary interactions between atoms and
molecules, plays an important role in the EOS, as a source of a scal-
ing factor for calculating the other two temperature-dependant parameters,
α(T ) and b(T ). It will be shown that by knowing the second virial coeffi-
cient, the prediction of the entire pressure–volume–temperature (PV T )

surface of fluids can be achieved, at least, for state points less than the
critical temperature. A knowledge of the binary intermolecular potential
energy between atomic and molecular constituents of the systems [3, 4]
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makes it possible to calculate second virial coefficients. Unfortunately,
there are no exact intermolecular potential energies (except for some sim-
ple gases) for real fluids.

Therefore, it seems reasonable to find other methods to evaluate the
second virial coefficient. Of course, the experimental second virial coeffi-
cient is another good source for using the EOS. But experimental second
virial coefficients have not been derived for all systems over a wide range
of temperatures. The most generally useful method for prediction of the
volumetric properties of fluids, such as the second virial coefficient, is the
use of the hypothesis of corresponding states, which came originally from
van der Waals in his well-known EOS.

Many investigations have attempted to extend the applicability of
equations of state for pure and liquid mixtures [4–11] with even more
readily available parameters to cover a wide range of substances, even for
those which experimental data such as the second virial coefficient or the
intermolecular potential energy are not yet available . In the absence of
accurate values of the second virial coefficients, there are several corre-
lation methods, usually based on a principle of corresponding states, by
which B2(T ) can be estimated with reasonable accuracy. We tested the
ISM equation of state [3] for mixtures of fluids, by applying correlations
of Boushehri and Mason [11] over a wide range of temperatures from
170 to 369 K with good agreement with refrigerant mixture densities of
Refs. 12 and 13. The purpose of this paper is to develop a method [11]
for predicting the equation of state of saturated mixtures from properties
that are readily available at ordinary pressures and temperatures. In par-
ticular, we used the latent heat of vaporization and the liquid density at
the normal boiling point as two properties that can be used to correlate
and predict the behavior of saturated liquids. These two properties, if not
directly available, can be obtained with sufficient accuracy from two mea-
sured vapor pressures and liquid densities [11].

2. EOS FOR PURE SUBSTANCES

In this section, we summarize the results of the derivation of the sta-
tistical mechanical equation of state for pure fluids, which was derived by
Ihm et al. [2], from statistical–mechanical perturbation theory. This equa-
tion of state is

P

ρkT
=1+ (B2 −α)ρ

(1+0.22λbρ)
+αρG(bρ) (1)

where P is the pressure, ρ is the molar density, B2 is the second virial
coefficient, α is the contribution of repulsive forces to the second virial
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coefficient, b is the van der Waals covolume, and kT is the thermal energy.
The strong principle of corresponding states contained in Eq. (1) has led
to an appreciable improvement in both accuracy and simplicity [2]. The
basic idea is that the form of G(bρ) does not need to be specified accord-
ing to some model of a fluid composed of hard convex bodies, but Eq.
(1) can be solved for G(bρ) in terms of Z = P/(ρRT), ρ,B, and α, and
this particular combination of quantities can then be predicted as a func-
tion of the single variable bρ. The whole PVT surface is thereby collapsed
to a single curve by plotting the data in this way. The new corresponding
states principle has the form [2],

[G(bρ)]−1 ≡αρ

[
Z −1− (B2 −α)ρ

(1+ δbρ)

]−1

=1−λbρ (2)

where Z =P/(ρkT ) is the compressibility factor and G(bρ) is the average
pair distribution function for hard convex bodies at contact. It is shown
that [G(bρ)]−1 vs. bρ is very nearly a straight line whose slope defines the
constant, λ [2]. The foregoing results culminate in the equation of state
that is the starting point for the present work:

P

ρkT
=1+ (B2 −α)ρ

1+0.22λbρ
+ αρ

1−λbρ
(3)

where λ is equal to 0.454 for noble-gas fluids and less for more complex
fluids, and it was found that δ in Eq. (2) can be taken equal to 0.22λ with
sufficient accuracy [2, 3]. Because the theoretical foundation of this EOS
involves a mean-field approximation, it can be applied to predict PVT
data at any pressure and temperature, except the critical and two-phase
regions. If the values of B2, α, and b are known, the free parameter λ

can be determined experimentally from high-density PVT data such as a
saturated liquid density. The major problem now is to find the parame-
ters B2, α and b. In the following, we describe a procedure for the deter-
mination of these temperature-dependent parameters using a macroscopic
corresponding-states correlation.

3. CORRELATION PROCEDURE

The second virial coefficient B2(T ) plays a central role in the
application of Eq. (3). It is used both directly and as the source of scal-
ing constants for the calculation of α(T ) and b(T ). The minimum input
information needed to use Eq. (1) consists of the value of B2(T ) plus
some high-density data to fix the value of an adjustable shape constant
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in G(bρ). For many fluids, neither accurate potential functions nor experi-
mental values of B2(T ) over the whole range of temperature are available.
In the absence of accurate values of B2(T ), there are several correlation
schemes, usually based on the principle of corresponding states, by which
B2(T ) can be estimated with reasonable accuracy. To determine the param-
eter B2(T ), we have used the following correlation [11]:

Bρnb =0.403891−0.076484(∆Hvap/RT )2 −0.0002504(∆Hvap/RT )4.

(4)

Once the B2(T ) values are known, the parameters α(T ) and b(T ) of the
equation of state are derived from the second virial coefficient [11]:

αρnb=a1 exp[−c1(RT/∆Hvap)]+a2

{
1− exp[−c2(∆Hvap/RT )1/4]

}
(5)

bρnb = a1[1− c1(RT/∆Hvap)] exp[−c1(RT/∆Hvap)]

+a2

{
1− [1+0.25c2(∆Hvap/RT )1/4] exp[−c2(∆Hvap/RT )1/4]

}
(6)

a1 =−0.1053 c1 =5.7862

a2 =2.9359 c2 =0.7966

where ρnb and ∆Hvap are the liquid density and heat of vaporization at
the normal boiling point, respectively. The correlations cover a wide range
of temperatures.

The remaining problem is to find λ from PVT data. This adjustable
parameter is determined from Eq. (3) using normal boiling point data.
Once the value of the constant λ is determined, the entire volumetric
behavior is established. The values of λ for each fluid are given in Table I.
When the temperature-dependent parameters together with the values of λ

are known, Eq. (3) can been applied to calculate the PVT properties.

4. EXTENSION TO MIXTURES

A formal extension of Eq. (1) to mixtures can be written as [3]

P

ρkT
=1+ρ

∑
ij

xixj [(B2)ij −αijFij )]+ρ
∑
ij

xixjGijαij (7)

where xi and xj are the mole fractions.
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Table I. Parameters for 12 Refrigerants

Refrig. Chemical formula Tnb(K)a ρnb (kg·m−3)a ∆Hvap/R(K)a λ

R12 CCl2F2 243.35 1486 2414.1 0.3911
R13 CClF3 191.75 1522 1884.7 0.3890
R22 CHClF2 232.35 1412 2438.9 0.4027
R23 CHF3 191.05 1460 2021.0 0.4042
R32 CH2F2 221.35 1215 2396.4 0.4085
R115 C2ClF5 234.21b 1558c 2334.5b 0.3921
R116 C2F6 194.95 1605 1942.2 0.3920
R125 C2HF5 224.95 1516 2382.1 0.4044
R134a CF3–CH2F 247.05 1378 2663.0 0.4077
R143a CF3–CH3 225.55 1166 2324.9 0.3991
R152a CHF2–CH3 248.45 1011 2581.9 0.4008
R218 CF3–CF2–CF3 236.45 1603 2351.9 0.3917

aFrom Ref. 14.
bFrom Ref. 15.
cFrom Ref. 12.

For mixtures, the quantities Gij and Fij are given by [3]

Fij = 1
1− ξ3

−
(

didj

dij

) 1
6πρ

∑
k xkd

2
k (4δk +1)

(1− ξ3)(1+ 2
3πρ

∑
k xkd

3
k δk)

(8)

Gij = 1
1− ξ3

−
(

didj

dij

) 1
6πρ

∑
k xkd

2
k (4λk −1)

(1− ξ3)(1− 2
3πρ

∑
k xkd

3
k λk)

(9)

ξ3 = 1
6
πρ

∑
k

xkd
3
k (10)

with δk = 0.22 λk.
The equation for calculating dk is

bk = 2
3πd3

k (11)

The single summations run over all the components. The only interac-
tion parameter in these expansions is bij . Gij and Fij depend on all the
components of the mixtures. The simplest combining rules for predicting
unlike molecule interactions from like-molecule interactions are an arith-
metic mean for ρ

−1/3
nb and a geometric mean for ∆Hvap.

(ρnb)
−1
3

ij = 1
2

[
(ρnb)

−1
3

i + (ρnb)
−1
3

j

]
(12)
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Table II. Comparisons between Calculated and Experimental Values [12] of Saturated
Liquid Densities for 33 Mixtures

T (K) P (bar) ρexp(kg·m−3)a NP b AAD (%)c

0.186 R12 + 0.814 R152a
183.15–358.65 0.03–29.30 1246.2–738.1 14.0 0.852

0.340 R12 + 0.660 R152a
183.15–358.15 0.03–30.23 1328.9–772.9 15.0 1.316

0.606 R12 + 0.394 R152a
183.15–359.95 0.61–31.28 1463.6–833.9 14.0 1.105

0.824 R12 + 0.176 R152a
183.15–352.15 0.03–25.19 1569.5–982.35 14.0 1.871

0.176 R22 + 0.824 R12
223.15–333.15 0.05–17.76 1523.7–1134.0 12.0 2.057

0.279 R22 + 0.721 R12
213.15–351.15 0.03–27.34 1540.1–1008.1 13.0 1.800

0.633 R22 + 0.367 R12
198.15–369.65 0.01–38.58 1543.5–848.5 14.0 1.223

0.807 R22 + 0.193 R12
187.15–353.15 0.01–35.26 1555.0–904.2 15.0 0.767

0.118 R22 + 0.882 R115
198.55–339.34 0.02–25.78 1662.1–959.2 14.0 0.784

0.241 R22 + 0.759 R115
204.85–334.45 0.03–24.79 1621.2–997.15 13.0 1.322

0.630 R22 + 0.370 R115
198.15–337.35 0.02–28.41 1579.0–969.8 13.0 1.700

0.818 R22 + 0.182 R115
205.15–349.45 0.03–35.73 1524.3–881.0 14.0 0.993

0.226 R32 + 0.774 R134a
194.75–322.35 0.01–16.57 1488.5–1062.5 12.0 1.465

0.500 R32 + 0.500 R134a
198.35–324.35 0.02–22.20 1423.6–989.2 11.0 1.538

0.782 R32 + 0.218 R134a
183.15–323.55 0.01–27.11 1389.8–913.1 14.0 1.438

0.844 R32 + 0.156 R 134a
192.55–317.95 0.02–24.91 1345.6–923.1 12.0 1.191

0.221 R32 + 0.779 R125
183.15–311.55 0.01–20.89 1612.9–1073.9 13.0 1.397

0.431 R32 + 0.569 R125
193.15–313.15 0.02–23.04 1527.2–1029.2 13.0 1.664

0.654 R32 + 0.346 R125
173.15–317.15 0.01–26.52 1512.1–958.8 13.0 1.788

0.836 R32 + 0.164 R125
193.15–314.15 0.02–25.23 1376.1–935.7 12.0 1.535

0.247 R23 + 0.753 R13
173.15–289.35 0.05–36.40 1586.3–875.7 15.0 1.891

0.500 R23 + 0.500 R13
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Table II. Continued

T (K) P (bar) ρexp(kg·m−3)a NP b AAD (%)c

189.15–283.15 0.12–35.10 1511.6–917.3 14.0 0.885
0.745 R23 + 0.255 R13

193.45–281.65 0.15–34.30 1472.7–936.59 15.0 0.802
0.849 R23 + 0.151 R13

173.15–281.05 0.04–33.07 1537.7–952.8 14.0 0.882
0.138 R32 + 0.862 R115

230.15–320.35 0.17–22.03 1523.1–1074.6 12.0 2.586
0.174 R125 + 0.826 R143a

220.15–328.05 0.07–25.92 1248.7–808.7 14.0 0.609
0.369 R125 + 0.631 R143a

209.15–324.35 0.04–24.18 1353.7–879.4 13.0 0.598
0.616 R125 + 0.384 R143a

188.15–321.95 0.01–23.43 1508.3–948.4 13.0 0.976
0.805 R125 + 0.195 R143a

221.15–315.95 0.08–20.86 1466.4–1031.5 13.0 1.132
0.828 R23 + 0.172 R116

172.65–256.65 0.04–17.26 1549.9–1143.6 11.0 2.674
0.290 R22 + 0.710 R218

167.55–317.15 0.01–20.11 1780.8–1084.1 12.0 2.769
0.430 R22 + 0.570 R218

167.23–274.03 0.01–6.86 1751.6–1344.7 11.0 2.554
0.810 R22 + 0.190 R218

239.15–325.28 0.19–24.07 1432.7–1044.1 12.0 2.705

aFrom Ref. 12.
bNP: Number of data points.
cAAD (%) = 100(|ρexp −ρcal|/ρexp)av.

(∆Hvap)ij = [(∆Hvap)i(∆Hvap)j ]
1
2 (13)

Once (ρnb)ij and (∆Hvap)ij are known, the values of αij , bij , and
(B2)ij follow from Eqs. (4)–(6) as was done for pure substances.

5. RESULTS AND DISCUSSION

In this paper, 33 mixtures from 12 pure refrigerants were studied with
the ISM equation of state, and our essential result is that the ISM equa-
tion of state, Eq. (7) with the correlations of Boushehri and Mason, Eqs.
(4)–(6), for liquid mixtures can be used to predict property values over the
entire liquid range without the need for any high-pressure measurements.
Actually the purpose of this work is to show how the ISM equation of
state can be used with even less input information for refrigerants. Two
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constants are needed for each pure component, ∆Hvap and ρnb, which
are readily available, and we obtained them from Refs. 12, 14, and 15.
There is seldom any difficulty in determining them; only simple mea-
surements are needed if values cannot be found in the literature. The
temperature-dependent parameters of the equation of state are calculated
with Eqs. (4)–(6). The free parameter λ of Eqs. (8) and (9) for each com-
ponent is calculated by using boiling-point data by means of Eq. (3).
This method for determining λ makes the whole procedure self-correct-
ing, because if the input values ∆Hvap and liquid density ρnb at the nor-
mal boiling point are not accurate, the effects will be largely compensated
by this adjustable parameter. Apparently the “shape” effects describe by ω

affects ∆Hvap and ρnb in such a way as to tend to compensate for their
influence on B. Once the value of the constant λ is determined, the entire
volumetric behavior of the given fluids is established. Values obtained for
λ as well as the heats of vaporization and liquid densities at the normal
boiling point for 12 refrigerants are given in Table I.

The present calculations for these saturated liquid refrigerant mixtures
were made for many thermodynamic points, and the results are given in
Table II, along with the AAD (average absolute deviation). All of the
comparisons in this table are with NIST Standard Reference Database 23
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[12], and also there are comparisons with the refrigerant mixture densities
of Ref. 13 in Fig. 1. As shown in Table II and Fig. 1, there is good agree-
ment between the calculated values and results of Refs. 12 and 13 over a
wide range of temperatures, 170 K < T < 369 K.

In summary, statistical–mechanical theory now allows the develop-
ment of equations of state for saturated liquid mixtures from simple mea-
surements at ordinary pressures and temperatures.
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